
Modeling images of natural 3D surfaces: 
overview and potential applications A 

A b s m f -  Generative models of natural images have long been both the surface model and the rendering technique. However, - 
U s e d  in Computer vision. However, since they only describe the 

Of 2D scenes, they fail to capture al' the properties Of 
the underlying 3D world. Even though such models are sufficient 
for many vision tasks a 3D scene model is when it comes 

the main contribution of this paper is to derive a complete gen- 
erative model for images of natural surfaces. After describing 
the forward problem, in Section I11 we detail a few potential 

to infe&iQ a 3D ob&t or &wa&ristia. In this paper, we 
present such a generative model, incorporating both a multiscale 
surface prior model for surface geometry and reflectance, and 
an image formation process model based on realistic rendering, 

the computation of the posterior model parameter densities, and 
on the critical aspects of the rendering. we  afso how to 
efficiently invert the model within a Bayesian framework. We 
present a few potential applications, such as asteroid modeling 
and Plane- toEWPPhy recove% bY Promking 
results on real images. 

applicatiOnS to Computer Vision using Bayesian inference, 
show preliminary results and discuss the related challenges. 

11. GENERATIVE MODEL 
that accounts for the Physics Of me generation. we On We first define a surface model S which consists of a 

set Of 3D vertices v (geometry) forming a triangular mesh, 
and scalar albedos p, one for each triangle. We assume that 
all the parameters are random variables governed by a joint 
probability distribution. The geometry model is described in 
Section A. It comprises a set of coefficients w (wavelet 
transform of v) conditioned upon the roughness parameters A, 
y and q. The reflectance model is described in Section B and is 
made of coefficients w (wavelet transform of p) of roughness 
parameters E ;  we also define a model map m and scattering 
parameters K. The camera and light parameters are denoted 
by 8. An image I is obtained from S and 8 by rendering, 
as explained in Section C .  Any observed image X depends 
on I and 0 through a degradation model given in Section 
D. The relationships between all these variables are given as 
a graphical model in Fig. 1, where each arrow represents a 
conditional density, and each leaf node a prior density. 

I. INTRODUCTION 

The model we study in this paper is intended to describe 3D 
natural surfaces such as planetary or asteroid relief, as well as 
optical images of these surfaces, taken under different viewing 
and lighting conditions. 

Natural image statistics can be efficiently described by 2D 
models, as shown in various studies such as [1]-[5]. These 
image models are mostly bidimensional, and they capture 
some of the characteristics of natural objects, such as scale 
invariance, spatial adaptivity and various roughness or regu- 
larity properties. Within a Bayesian framework [6], they can 
be used to infer the model parameters from an observation (or 
a set of observations), thus providing estimates of the modeled 

However, an image is not a simple representation of a 
natural 3D object, it is in fact a measurement, corrupted by 
blur and noise, of a 2D rendering of such an object. Therefore 
it is not appropriate, in general, to model an image directly 
as a natural phenomenon, and there is usually no simple 
correspondence between the inferred model parameters and the 
surface parameters (the former are usually a complex mixture 
of the latter), except in some simple cases [q. Therefore the 
imaging model should be taken into account. Furthermore, the 
object model should relate to the physical properties of the 
studied surface, such as shape, reflectance, roughness etc. 

We propose to build a full generative model that combines a 
3D model with a realistic imaging process to describe 
both the scene and the various observations of this scene. This 
model is described in Section 11; the surface model includes 
topography, reflectance and various hyperpriors, whereas the 
imaging model consists of an accurate rendering algorithm 
followed by a degradation process. Our contribution consists of 
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Fig 1. Graphical model, or hierarchy of the random vanables in the proposed 
generative model, including rendering and inverse wavelet transform (IWT). 

A- Multiscale surface geomehY 
Fractals have long been used to synthesize realistic looking 

planetary terrains, because of their resemblance to natural 
objects [l], [8]. From a qualitative point of view, they certainly 



exhibit similar statistical properties, such as scale invariance. 
We propose to derive a multiscale roughness model that 
accounts for these properties, by building an appropriate 
probability density function of the vertex variables v. 

in this paper, we are interested in moaeiing any kind 
of surfaces, such as asteroids or entire planets, which are 
topologically different from flat open landscapes commonly 
used in terrain simulation. For this purpose, we choose to 
use a subdivided mesh [9] as the topological support of v. 
On each site of this support lies a 3D vertex variable. This 
support is semi-regular, since we start from a root mesh of 
fixed connectivity (such as a hexagonal grid in the planar case, 
or an icosahedron in the spherical case), then we subdivide it 
regularly by recursively adding a vertex between each pair of 
existing vertices (see Fig. 2). 

Fig. 2. Subdivision scheme used to produce a finer mesh from an existing 
triangular mesh: a new vertex (white) is added between each pair of 2 vertices 
(black), using a prediction or interpolation rule. 

A possible way of studying fractals is to look for statistical 
self-similarities. Simple probabilistic estimators can be used 
instead of looking for repetition and scaling of particular 
geometrical shapes. If there is a scale invariant probability 
function fitting to the data, the object is said to be statistically 
scale invariant, and we can call it fractal. Usually a spectral 
representation such as the Fourier transform (when available) 
gives access to the distribution of the average size of object 
features as a function of the scale, regardless of the location. 
For perfect spherical objects, spherical harmonics provide a 
powerful spectrum analysis tool. However, the surfaces we 
model have an irregular sampling in general, since the radius 
variations are large w.r.t. the object radius, therefore we prefer 
to use a more flexible tool such as wavelets in order to access 
the scale of geometric features. 

I )  Wavelet transform of a surface: Now that the topology 
is properly defined, how do we deal with the 3D geometry? 
The key point of this subdivision scheme is the new vertex 
prediction, which is achieved by interpolation. The simplest 
is to take the midpoint of the edge, but leads to an unwanted 
piecewise planar surface. Therefore we prefer using a smooth 
scheme [IO], involving 8 parents for each new vertex instead 
of 2. We use this scheme in the regular case (both edge 
vertices have 6 neighbors), otherwise we use another one [l 11. 
If V(vj) denotes the 8 neighbors of a new vertex vj, the 
prediction function is denoted by Bj (V(vj)). 

A subdivided mesh at level J is given. The basic idea is 
to split the sites into two interleaved sets: the topological 
midpoints and their closest parents (respectively white and 
black points on Fig. 2). Then, the former are predicted from the 
latter using Bj. The difference between actual and predicted 
vertices gives us the wavelet details, since it represents at each 
level the difference between a smooth approximation and the 
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actual surface. These details are topologically located at the 
same "white" sites as the midpoints, of index j :  

wj V~ - B, (V(vj)) (1) 
-- _. without iifting, the waveiet functions wouid not have sufficient 
smoothness properties, such as spectral selectivity, needed to 
capture scale properties of natural surfaces. Therefore we use 
the lifting scheme [12], consisting of adding to each "black" 
vertex (index I C )  a linear combination of the nearest wavelet 
details at the "white" sites (index j ) .  We choose 7 = 3/4. 

j-k 

Finally, the wavelet transform is performed by recursively 
applying Eq. (1) to the "white" sites then the lifting at the 
"black" sites, in the reverse order from the subdivision, N 
times. The result is N levels of details, plus one coarse 
approximation of the mesh at subdivision level J - N .  It is 
simple to invert, starting with the lifting step and replacing 
the addition by a subtraction in Eq. (2), then inverting Q. 
(1) which consists of predicting the midpoints by using Bj 
and adding the coefficients wj. Filtering the detail coefficients 
provides a simple mesh smoothing technique [13]. 

2) Local scale and direction: The wavelet functions are 
actually defined in a topological space, which is semi-regular, 
and do not reflect the local geometry of the studied object. 
Thus, the coefficients encode absolute variations of the ge- 
ometry between two approximation levels, regardless of the 
size of the triangles in the mesh. However, a given variation 
does not have the same physical meaning for different point 
densities. To account for that, we define the notion of local 
scale. This scale has nothing to do with the (integer) levels 
of the transform: at a given level there is a mixing of various 
scales depending on the local mesh density. The local scale 
for vj is defined so that we can account for local deformation 
of each triangle (see Fig. 3). L is the length of the edge VaVb 

in the approximation mesh ('j is the midpoint of ( q b ) ) ,  1 
is a distance from vj to a parent of order 2, and the angle 
a encodes the skew of the triangle. The scale is actually an 
average of the scales of both triangles sharing the same edge. 

* c 
L 

Fig. 3. Local deformation of the mesh around a wavelet coefficient as the 
midpoint of the edge a1a2: definition of the lengths L and 1, skew angle CY. 

Like the approximation coefficients, the wavelet details are 
3D vectors. The former have an obvious meaning, i.e. the same 
object at a coarser resolution, whereas the latter embed details 
both along and orthogonal to the surface. To provide a really 
useful transform, we have to separate these two components, 
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respectively the real geometric details (variations normal to the 
surface, denoted wf) and the surface sampling irregularities 
(variations parallel to the surface denoted w:). 

3) The surface model: Using wavelets on meshes we can 
perform the muitiresoiution anaiysis [i4] or' a surface for any 
topology, defined on a subdivided mesh. We have used such 
a representation of the asteroid 433 Eros; the geometry was 
given by the NEAR mission [15]. This way we have checked 
that this object is statistically scale-invariant. As shown in fig. 
4, the amplitude spectrum A, estimated by the spatial average 
of the amplitude of the geometric details < /w$l >, can be 
modeled by a scale invariant law where A0 is a constant: 

(4) 

Here, the local scale s is related to the local spatial frequency 
f by s = l/f. The scale invariance implies A ( f )  = A. f - 4 ,  

which describes the so-called "Uf" noise, a widely used model 
for natnral objects [I], [3]. 

log < Iw$ 1 > 2i 4 log(sj) + log A0 
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x = - log local scale 
Fig. 4. Log-log plot representing the average size of the wavelet details of the 
asteroid 433 Eros as a function of the local scale, illustrating the statistically 
scale-invariant behavior of the surface. 

This can be seen as a probabilistic model of the wavelet 
coefficierris. it is- closely related to a fractional Brownian 
motion [16], used to describe natural images. We extend this 
kind of model to natural surfaces (see Fig. 5). This wavelet 
transform, like more traditional 2D wavelet transforms, helps 
decorrelate the vertex random variables since the surface 
exhibits a self-similar behavior. Moreover, it conserves the 
number of coefficients since it is critically sampled, therefore 
we can reasonably assume that each normal wavelet detail 
coefficient can be accurately modeled as an independent 
random variable. To simplify, we use a zero-mean Gaussian. 
We build the joint distribution according to Eq. (4), and we 
define A, as local roughness parameters: 

Thus, we constrtlct a spatially aa'qtive fractal model applica- 
ble to a broad range of natural surfaces, whose properties are 
generally spatially varying. 

On the other hand, the parallel coefficients wI1 are related 
to the smoothness of the surface sampling and their value 
should not have &y influence on the actual object shape. 
A model involving them can be considered as a sampling 
regularity prior, whereas the model of Eq. (5) acts as a surface 

smoothness prior. We define a simple uniform prior on the 
scaled coefficients w: / s j  with the smoothness parameter y: 

We express the prior distribution of the vertices P(v) in the 
wavelet domain instead of the vertex domain by P(w), and 
the conditional independence leads to P(w) = P(wl)P(wll). 
Then the vertices v are obtained by inverse transform of w. 

Fig. 5. Surfaces generated from the fractal model with q = 1.1 and uniform 
roughness X (left: Xd.5,  middle: X=1.5, right: X=5). We have used the 
renderer described in Section II.C. with identical camera and light directions. 

B. Hierarchical refectance model 
Images of natural surfaces are the product of albedo and 

shading. We propose to model the albedo field using existing 
natural image models [lq, [18], which capture both the scale 
invariance and the spatial adaptivity via a multiresolution ap- 
proach. The shading is modeled through a reflectance function 
f that depends on the surface geometry (vertices v) and the 
observation parameters 0. 

To be more realistic, a model map should be included to 
account for the spatial variability of the terrain in real-world 
surfaces. This map consists of a discrete midom variable m, 
for each vertex of index j ,  and represents a local class of 
terrain (such as rock type, water, forest...); each class relates 
to a different albedo and reflectance function. More precisely, 
for each value of m, we have a multiscale albedo model of 
prior parameters E, governed by the conditional distribution 
P(E 1 m), and a parametric reflectance function f" with the 
corresponding conditional parameter density P ( K  1 m). 

Thus we define a hierarchical model as follows: there is a 
prior distribution of the classes denoted by P(m), then we 
have conditional densities P(E I m) and P(K I m), then the 
albedo model P ( p  I E )  and the reflectance model f". 

Let us focus on the albedo density. We can derive a 
multiscale model based on wavelets on a mesh, inspired from 
the geometry model. To ensure the physical constraints on the 
albedo, let us first define a modified albedo ,5 E R such that 
p = pt(/3) and p E IO, 11. We choose p ( x )  = (1 t 
which is a bijective sigmoid, so that we can easily use the 
density of ,5 instead of the density of p. Therefore, we need 
to use the Jacobian p': 

P(P I E )  = P(P I E )  P ' ( 8  (7) 

We propose to use the same analysis scheme as in the previous 
section to derive albedo wavelets. On the mesh, we can first 



define the albedos on the same topological sites as the vertices, 
then we get one albedo per triangle by averaging over the 3 
triangle vertices. This way it is straightforward to apply Eqs. 
(1) and (2) using the scalar albedos instead of 3D vertices, in 
the prediction scheme as weii as in the iifting step. To make 
a physical interpretation of the wavelet coefficients, we keep 
the same local scale estimate s j  related to the local geometry 
of the mesh. We denote the scalar albedo wavelet details by 
w j ;  their density is then given by: 

The final albedos are thus obtained from the coefficients above 
by inverting the wavelet transform, averaging to get one albedo 
per triangle J*, then remapping into [0, 11 by the function p. 

C. Accurate rendering with derivatives 

We need to produce an image from a fixed surface model 
S and a set of camera and light parameters 0 (this is 
called rendering in computer graphics). We assume a pinhole 
camera model, which is a simple way to perform perspective 
projection, and for the light both a point source at infinity 
and an ambient component. 0 contains both internal camera 
parameters (such as pixel size and focal length) as well 
as external parameters (position and orientation) and light 
parameters (direction and intensity). The major challenge is 
to compute accurate images, as well as their derivatives, i.e. 
how pixel intensities vary with changes to the surface and the 
observation parameters. The derivatives are required to per- 
form the reconstruction via any gradient-based deterministic 
optimization algorithm. 

We denote by I p ( S ,  0) the rendered intensity for the pixel 
p .  This intensity is a product between surface albedo and 
local shading, which depends on geometry, lighting conditions, 
reflectance functions, and camera position and orientation. 
Computing accurate pixel intensities requires working in the 
object space, which means performing visibility determination 
for each pixel using computational geometry. This is the only 
way of obtaining an image that precisely corresponds to a 3D 
model, which is critical in some cases (see Section III-B). 

1) Discrete intensity computation: When there are no OC- 
clusions or shadows, the contribution of a triangle A to a 
pixel p is the area of the triangle/pixel intersection polygon 
A:, times the irradiance LA. We denote this contribution by 
the fractional power WF:  

wp" = A; L~ (9) 

When there are occlusions, the polygon is processed for hidden 
surface removal, as explained in paragraph 2 and Fig. 8. 

Here the irradiance is assumed to be piecewise constant. We 
could use a more accurate piecewise linear model (cf. Phong 
model [19]), as it will be discussed in Section 1II.C. 

The total intensity for pixel p is obtained by summing the 
fractional powers over the triangles intersecting the pixel p ,  
Le. the set V ( p ) ,  then multiplying them by a space-varying 

factor K p  encoding the exposure time and various transmission 
factors, as well as a geometric attenuation factor. 

I p =  K p  Wp" 
AEV(W) 

The irradiance is given by multiplying the direct light source 
intensity I*, the albedo p and the shading function f, which 
depends on the surface orientation (triangle normal nA>, 
and the camera and liohting directions uc and u*, through 
the incident angles B , f g @  and the viewing angles e:, 4: 
as defined on Fig. 6. There is also a non-directed light of 
intensity Io  that accounts for ambient light and interreflections. 
The corresponding shading function is denoted fo and only 
depends on the triangle normal and the viewing direction. 

In the following we assume a Lambertian model, but this 
can easily be extended to more realistic parametric reflectance 
functions as proposed by Oren & Nayar in [20]. Then we 
simply have f = cos = nA .u* and fo becomes a constant: 

(12) LA = p n  ( I O f O  + I* nA . u*) 

Fig. 6 .  
angles for a triangle A of the 3D surface. 

Illustration of the light and camera directions and corresponding 

2 )  Accurate visibility determination: We have developed a 
fast pixel integration method that computes, for each pixel 
p ,  the exact visible areas A: of all the projected triangles 
A that overlap this pixel. It is an object-precision technique, 
since the size of the pixels does not affect the accuracy. This 
is made possible by combining bucket sorting (to build a 
list of triangles for each pixel) and depth buffers (to quickly 
reject totally hidden triangles), and by restricting the complex 
computations to the pixels where they are really required. This 
is used for both hidden surfaces and shadows, since shadows 
are surfaces hidden from the light source. 

We notice that partial triangle occlusions occur only along 
curves (projected ridge lines), thus dramatically reducing the 
number of pixels of the image that require complex geometric 
computations to perform hidden surface removal. Outside 
ridge lines, triangles are either fully visible or fully hidden. 

First, we determine the occlusion map, by rasterking each 
edge of the mesh that defines a ridge, as follows. The normal 
to a triangle is used to test whether the triangle is front-facing 



(nn. u* > 0) or back-facing. A ridge segment is defined as 
an edge separating a front-facing from a back-facing triangle, 
such that the front-facing one is the closest to the camera 
(otherwise it is a valley), see Fig. 7. The occlusion map is 
defimd by the sei of pixels interseci the ridge segmeilis. 

A front 

Fig. 7. k t  Uridge be the oriented edge (according to the front-face triangle) 
and the ridge normal the average nridge = (nfront + nback)/2. The front- 
facing triangle Afiont is closest to the camera @ luridgs, u*, nrjdgeI > 0. 

Then, we perform occluded surfaces removal only for the 
pixels in the occlusion map, which typically represent less than 
1% of the image. 

The principle of visible surface determination relies on 
recursively subtracting all the triangles that are in front of 
a particular triangle, thus obtaining a polygon, as shown in 
Fig. 8. Such methods exist in computer graphics [21], [22] 
but they do not perform recursive triangle subtraction using 
large triangular meshes. In addition to the geometry of line 
segments we use the topological connectivity of the mesh to 
design an algorithm that is robust to vertex and edge align- 
ments occurring when intersecting adjacent triangles with a 
polygon. The polygon areas involved in the fractional intensity 
computation have to be determined, as well as their derivatives. 
We keep track of the original mesh vertices that generate all the 
geometric intersections involved in the subtraction algorithm 
(white vertices on Fig. 8). This way, it is possible to compute 
the intensity derivative w.r.t. any vertex, even in the case of 
complex occultations involving many vertices. 

0 Triangle A 
0 Occluding mangles 

taken into account accurately, at sub-pixel level. This is made 
possible by reusing the technique descebed above. 

First, an orthographic projection along the light direction 
is used to determine, for each triangle, the list of occluding 
triangles. Then, fai each xckided tiimgie, L9e ziea not iii 

shadow is determined by subtracting the occluding triangles, 
projected using a different projection this time (along the light 
direction, but onto the shadowed triangle). 

It is also possible to compute shadows at a triangle level, by 
determining for each triangle the area visible from the directed 
light source (as we do from the camera for hidden surface 
removal). Then we define a shadow rate for each triangle as 
the visible to total area ratio, which multiplies the second 
term in Q. (12), so that triangles in full shadow will only 
receive ambient light. This approximation gives very good 
results when the triangles are small. 

4)  Computing the derivatives: The knowledge of the 
derivatives of the image intensity w.r.t. any parameter of the 
generative model, such as the surface or the camera and light 
parameters, is highly valuable. First, efficient deterministic 
optimization techniques require derivatives to estimate model 
parameters from observed data. Second, they can help com- 
pute the uncertainty of the generated models by providing a 
Gaussian approximation of the model probability distribution. 
Moreover, the intensity derivatives can be used to compute the 
optical flow related to changes in the vertices or camera pa- 
rameters, thus enabling us to add motion blur to the rendering 
scheme. 

The basic idea of the computation is the chain rule. All 
we need to know is the derivative of any function w.r.t. any 
variables this function directly depends on: for instance, the 
projection of a vertex only depends on the camera parameters 
and the 3D vertex; a fractional area A t  only depends on the 
projected vertices of A and the occluding triangles. Let us 
denote by U and V arbitrary vectors (such as vertices, albedos 
or areas). If we assume that we have n vectors Z, functions of 
U, and that V is a function of all Z,, then the corresponding 
derivatives are multiplied according to the chain rule to obtain 
the derivative of V w.r.t. U: 

This can be extended to a full derivative tree, encoding to the 
hierarchical relations between all variables in the rendering 
procedure, from ( S ,  0) to the intensities Ip .  

D. Observed image formation model 
In principle, the observed image is formed in 3 steps: 

1) the projection onto the image plane, which produces a 
piecewise constant image since we assumed that the irradiance 
is constant over triangles; 2) the convohtion by the point 
spread function (PSF) of the instrument; 3) the integration 
over each pixel. However, an equivalent model consists of 
replacing steps 2 and 3 by the convolution with a global PSF 
including both instrument and pixel PSF, then point sampling 
on a rectangular grid. 

V 

Fig. 8. For a pixel p, illustration of the visible part of the triangle (dashed 
pob'gon). of area A,". It is obtained by subtracting all occluding triangles 
from the triangle/pixel intersection polygon. 

3) Computing shadows: Shadow boundaries carry very 
important information on the 3D, independent of any albedo 
or reflectance estimation errors. Therefore they have to be 



for deterministic relations between variables: 

P ( X ,  S, 0) = P ( S ) P ( O ) P ( X  I I ( S ,  0))  (15) 

xPjmjP(K j mjP(E j m)pjw j ~ j d i ~ - ~ j S i i - ? w j j ~ ~ j ' 3 1 ; - ? w )  
P ( S )  = P(q)P(A)P(y)P(w' I q ,  A)P(wll I y)d(v-W-lw) 

Fig. 9. A simulated observed image (blurred and noisy rendering) of the 
asteroid 433 Eros surface observed during the NEAR mission (3D model 
from the NASA Planetary Data System) [15]. Uniform albedo, Lambertian 
reflectance model, ambienddirect light ratio lo%, Gaussian blur (width 2 
pixels) and Gaussian noise (variance 1% of the max. image intensity). 

If we make the assumption that the global PSF can be 
well approximated by a piecewise constant function, made 
of linear combinations of the pixel PSF, then steps 2 and 3 
can be swapped, and the convolution can be performed by a 
discrete filter denoted H ,  after performing the pixel integration 
as explained in the previous sections. Then, we simply add a 
discrete convolution step after the rendering, denoted by I*H.  
The proposed rendering technique does not produce aliasing 
artifacts since it  simulates the image formation process (most 
fast rendering algorithms produce aliased edges, since they 
rasterize triangles without performing any pixel integration). 

The deterministic image formation, including both rendering 
and degradation by blur, can be summarized as follows: 

Project the surface vertices onto the image plane; 
Determine the visible areas of each triangle, for each 

Compute the shadows for each triangle (paragraph C.3); 
Compute the irradiance for each visible triangle by 

Form the intensity I for each pixel by combining visible 

Blur the image by convolution with a discrete PSF. 
So far, we have only described the deterministic part of the 

image formation. The intensity measure in the camera sensor 
is a random process, because of the pixel noise (mainly due 
to photon, readout and thermal noise). We assume it can be 
modeled by a stationary white Gaussian noise of variance ui. 

This enables us to write the conditional density of an 
observed image X, given the rendered intensity I. This density 
is also the likelihood of the parameters ( S ,  0): 

pixel of the image (paragraph C.2); 

using a reflectance model (Eq. (12)); 

areas and irradiance (Eqs. (9)-(10)); 

The hierarchy of the variables is shown in Fig. 1: each arrow 
represents a conditional density, and each leaf node a density 
encoding the prior knowledge about the related parameter. 
Thus we have the full joint density where W-l denotes an 
inverse wavelet transform and the Dirac distributions 6 account 

All the densities involved in the equation above have been 
defined in Sections 1I.A and 1I.B. We give an example of 
simulated observed image in Fig. 9 for a known surface S 
and parameters 0. We show simulations from the geometry 
model in Fig. 5 (assuming uniform albedo). 

111. POTENTIAL APPLICATIONS AND CHALLENGES 

In many cases, computer vision can be seen as the inver- 
sion of a generative forward model. When such a model is 
probabilistic, a natural way of performing the inversion is via 
Bayesian inference [6]. Basically, it consists of computing 
a posterior density of the variables of interest, which is 
proportional to the joint density defined by the generative 
model. In general the full density is difficult to compute, and 
one prefers to estimate its maximum, or its mean. Whenever 
possible it is also useful to estimate the covariance matrix 
of the variables, since it represents the uncertainty on these 
variables. 

The model presented here can have multiple applications: 
we can try to estimate the surface geometry, the albedo map, 
the reflectance map, the scattering properties and the fractal 
dimension of the surface, etc. We can also estimate the obser- 
vation parameters to perform accurate camera calibration, PSF 
estimation, light calibration, etc. Estimating the reflectance 
map m consists of performing albedo classification. It is 
very important to understand that the classification should be 
performed on a physically meaningful terrain reflectance, not 
on image intensities which are the product of both reflectance 
and shading. The proposed model should help carry out such 
a classification since it clearly separates these two quantities. 

A.  Surface recovery from multiple images 
Surface recovery consists of inferring the 3D surface model 

and the reflectance map from a set of images. As seen from 
the generative model the complex interplay between surface 
geometry and reflectance maps cannot easily be inverted. 
There does not exist a unique relation between an observed 
image and the underlying 3D object. However, using multiple 
images helps constrain the solution to the inverse problem. 
Moreover, the use of priors such as the ones we describe in 
this paper further constrains the solution, acting like a regu- 
larization process. Then surface inference becomes possible, 
as preliminary results have shown. 

By restricting the observation parameters (camera parame- 
ters and light direction) to avoid shadows and occlusions and 
the model to a height field, we have shown that even when 
using a simplified version of the accurate renderer described 
in this paper, accurate 30 reconstruction is possible from 
both simulated [23] and real data. We have also assumed a 
Mber t i an  scattering model. A conjugate gradient algorithm 



was used to maximize the posterior density given all the 
observed images, with derivatives computed as explained in 
paragraph II.C.4. 

A physical model of the Duckwater, Nevada, area was 
constructed from the USGS digital eievation map. A CMOS 
panchromatic camera was used to image this model in sunlight 
(see Fig. 10). Camera pose and internal parameters were 
determined using the background checkerboard, and the sun 
angle was measured using a sundial. The inference started with 
a level surface, and converged to an estimate that is close to 
the original model (see Fig. 11): we obtained a maximum 
error less than 15mm with a 2m distance between camera 
and model. No existing stereo reconstruction method gave 
acceptable results in this case. 

We have done another experiment with a spatially variable 
albedo, by painting the same physical model mentioned above 
(see Fig. 12). The same inference procedure has been used, 
but this time the albedo was allowed to vary. The inferred 
surface geometry shows RMS errors between 1 and 2mm, and 
maximum errors usually less than l h m ,  which is better than 
in the constant albedo case. The results are shown in Fig. 13. 
The albedos look acceptable but their precision can not be 
quantified, since they have been added by hand (there is no 
ground truth). 

Having a textured surface obviously helps reconstruct the 
3D geometry. However, we have noticed some interaction 
between albedo and geometry, where abrupt albedo differences 
generate false slopes. To a lesser degree, the same problem oc- 
curs with extended albedo differences: smooth albedo variation 
generates shallow slopes in the heights. 

We have demonstrated the feasibility, and the reduced com- 
putational complexity, of the posterior density optimization 
using intensity derivatives w.r.t. model parameters, in  the case 
of height fields. By using wavelets on subdivided meshes 
as explained in Section II.A, i t  should be possible to infer 
objects of arbitrary topology such as entire planets, or aster- 
oids. We have to investigate various ways of performing the 
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Fig. 10. 
showing the checkerboard and the sun dial used for sun calibration. 

One of the 16 observed images in our constant albedo experiment, Fig. 1 I .  a. estimated geometry model; b: original topography. The units are 
millimeters. 1: 3D view of the height field z = f(r, y); 2: contour plot z = 
const, with contours every IOmm. 



optimization, for instance allowing the vertices to move in any 
direction, or constraining them to move along the local surface 
normal. When working in arbitrary topology, the initial mesh 
has to be deformed to fit the data. There are multiple solutions 
corresponding to various ways of arranging sampling points 
on the same surface. The mesh regularity prior described in 
this paper needs to be added to facilitate the optimization and 
improve the sampling regularity of the surface. 

The generic model-based vision approach presented here 
avoids most of the shortcomings of existing methods in surface 
recovery, such as shape from shading [24] and shape from 
stereo [25]. The former is difficult to apply when the albedo 
is spatially variable, while the latter usually produces a sparse 
point set as a surface estimate. We can reconstruct continuous 
surfaces from multiple images, using different viewpoints and 
various lighting conditions. 

Fig. 12. One of the 8 observed images in our variable albedo experiment. 

B. Super-resolution 
Nothing prevents us from increasing the model resolution 

arbitrarily, thus achieving so-called super-resolution. However, 
there are some practical limitations such as the cutoff fre- 
quency of the optical system, and the limited amount of (noisy) 
data. We need to make certain that the design of the generative 
model does not bring any further shortcomings. 

First, when surface triangle projections on the image plane 
are smaller than the pixel, which happens with increased 
surface resolution, computing accurate intensities in the object 
space is essential. Classical algorithms in computer graphics 
can not be used, because they perform image-based computa- 
tions which are too approximate in this case. That is why we 
insisted on building an accurate rendering algorithm. 

Second, the blur model shall preserve the spatial information 
of the high-resolution surface. For instance, a small projected 
triangle entirely contained in a pixel should produce a slightly 
different rendering when moved within the pixel. This is 
difficult with the current integration scheme which computes 
the area of visibility polygons; we believe it would be made 
possible by also computing the first order moments, because 
they are sensitive to the polygon location, even with small 
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Fig. 13. a: inferred albedo field (black=O, white=l); b: inferred geometry 
model; c: original topography. The units are millimeters. The topography was 
rendered using Matlab, with the same color maps and limits, emphasized by 
a directed light. 



triangles. A continuous displacement of tiny triangles would 
then result in a continuous variation of the rendered intensity. 

C. Data fusion 
Vsing this u~ifilfed approach [hat takes into acmunt aZ3edc, 

geometry and Zighting through a 3D surface model and an 
imaging model, it should be possible to use all the existing 
observations from a scene to build a single model that con- 
tains (almost) all the information present in this data. The 
observations include multiple images, with both geometric and 
shading content, but other modes (such as existing elevation 
models or odometry) could be included. Efficient data fusion 
[26] could be performed by building up a single model from 
multiple data sources. By computing the parameter uncertain- 
ties, it is possible to perform recursive updates of the model 
using a method such as the Kalman filter [27], instead of the 
estimation from all the data sources simultaneously which may 
be intractable with large volumes of data. 

IV. CONCLUSION 
We have proposed a detailed generative model to explain 

how both a complex natural surface and a realistic image of 
it is formed. When inverted within a Bayesian framework, 
this model leads to numerous applications in computer vision, 
such as surface recovery and camera calibration. It also has the 
potential to perform data fusion from large data sets, and to 
estimate reflectance and roughness properties of real surfaces. 

We have demonstrated the feasibility of the proposed ap- 
proach by reconstructing a 3D object from real images, using 
a simplified model. These results are promising, and we 
believe that more complex cases (such as occlusions, shadows, 
super-resolved surface and non-lambertian reflectors) could 
be addressed by using a more accurate forward model such as 
the one we describe in this paper. 
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